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Abstract In this article, an estimation is made to investigate the transient phenom-
ena in the magneto-thermoelastic model in the context of the Lord and Shulman theory
in a perfectly conducting medium. A finite element method is proposed to analyze the
problem and obtain numerical solutions for the displacement, temperature, and radial
and hoop stresses. The boundary conditions for the mechanical and Maxwell’s stresses
at the internal and outer surfaces are considered. An application of a hollow cylin-
der is investigated where the inner surface is traction free and subjected to thermal
shock, while the outer surface is traction free and thermally isolated. The displacement,
incremental temperature, and the stress components are obtained and then presented
graphically. Finally, the effects of the presence and absence of reinforcement on the
temperature, stress, and displacement are studied.
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1 Introduction

Fiber-reinforced composites are used in a variety of structures due to their low weight
and high strength. Materials such as resins reinforced by strong aligned fibers exhibit
highly anisotropic elastic behavior in the sense that their elastic moduli for extension
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in the fiber direction are frequently of the order of 50 or more times greater than their
elastic moduli in transverse extension or in shear. The mechanical behavior of many
fiber-reinforced composite materials is adequately modeled by the theory of linear
elasticity for transversely isotropic materials, with the preferred direction coinciding
with the fiber direction. In such composites the fibers are usually arranged in parallel
straight lines. However, other configurations are used. An example is that of circum-
ferential reinforcement, for which the fibers are arranged in concentric circles, giving
strength and stiffness in the tangential (or hoop) direction. The theory of strongly
anisotropic materials has been extensively discussed in the literature, Belfield et al.
[1] studied the stress in elastic plates reinforced by fibers lying in concentric circles.
Sengupta and Nath [2] discussed the problem of surface waves in fiber-reinforced
anisotropic elastic media. Singh [3] showed that, for wave propagation in fiber-rein-
forced anisotropic media, this decoupling cannot be achieved by the introduction of
the displacement potentials. Hashin and Rosen [4] gave the elastic moduli for fiber-
reinforced materials.

During the second half of the twentieth century, non-isothermal problems of the
theory of elasticity become increasingly important. This is due to their many appli-
cations in widely diverse fields. First, the high velocities of modern aircraft give
rise to aerodynamic heating, which produces intense thermal stresses that reduce the
strength of the aircraft structure. Second, in the nuclear field, the extremely high
temperature and temperature gradients originating inside nuclear reactors influence
their design and operations (Nowinski [5]). The theory of couple thermoelasticity was
extended by Lord and Shulman (LS) [6] and Green and Lindsay [7] by including
the thermal relaxation time in constitutive relations. The theory was extended for an
anisotropic body by Dhaliwal and Sherief [8]. Singh [9] studied wave propagation in
thermally conducting linear fiber-reinforced composite materials with one relaxa-
tion time. Verma [10] discussed the problem of magnetoelastic shear waves in self-
reinforced bodies. Chattopadhyay and Choudhury [11] investigated the propagation,
reflection, and transmission of magnetoelastic shear waves in a self-reinforced media.
Chattopadhyay and Choudhury [12] studied the propagation of magnetoelastic shear
waves in an infinite self-reinforced plate. Chattopadhyay and Michel [13] studied
a model for spherical SH-wave propagation in self-reinforced linearly elastic media.
Abbas and Abd-Alla [14] studied the effect of initial stress on a fiber-reinforced aniso-
tropic thermoelastic thick plate. Abbas et al. [15] studied generalized magneto-ther-
moelasticity in a fiber-reinforced anisotropic half-space. Tian et al. [16], Abbas [17],
Abbas and Abd-Alla [18], and Youssef and Abbas [19] applied the finite element
method (FEM) in different generalized thermoelastic problems.

The exact solution of the governing equations of the generalized thermoelasticity
theory for a coupled and nonlinear/linear system exists only for very special and sim-
ple initial and boundary problems. To calculate the solution of general problems, a
numerical solution technique is used. For this reason the FEM is chosen. The method
of weighted residuals offers the formulation of the finite element equations and yields
the best approximate solutions to linear and nonlinear boundary and partial differential
equations (see Wriggers [20]).

In this article, we have considered a thermal shock problem of generalized mag-
neto-thermoelasticity of a fiber-reinforced anisotropic hollow cylinder. The composite
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material is then locally transversely isotropic, with the direction of the axis of trans-
verse isotropy not constant, but everywhere directed along the tangents to circles in
which the fibers lie. The problem has been solved numerically using a FEM. Numeri-
cal results for the temperature distribution, displacement, radial stress, and hoop stress
are represented graphically. The results indicate that the effects of a magnetic field,
thermal relaxation time, and reinforcement are very pronounced.

2 Basic Equations

The constitutive equations for a fiber-reinforced linearly thermoelastic anisotropic
medium whose preferred direction is that of a unit vector a [9] are

σi j = λekkδi j + 2µT ei j + α(akamekmδi j + ai aj ekk) + 2(µL − µT )

×(ai akek j + aj akeki ) + βakamekmai aj − βi j (T − T0) δi j ,

i, j, k, m = 1, 2, 3, (1)

ei j = 1
2

(
u i, j + u j,i

)
, i, j = 1, 2, 3. (2)

The Maxwell’s stress equation is

τi j = µe
[
Hi h j + Hj h i − Hkhkδi j

]
, i, j = 1, 2, 3. (3)

The equation of heat conduction under the LS theory is

Ki j T,i j = ρce
(
Ṫ + τ0T̈

)
+ T0βi j

(
u̇ i, j + τ0 ü i, j

)
, i, j = 1, 2, 3. (4)

The equation of motion is

σi j, j + Fi = ρ ü i , i, j = 1, 2, 3, (5)

where

Fi =
(

J⃗ × B⃗
)

i
, (6)

for a slowly moving medium, the variation of the magnetic field and electric field are
given by Maxwell’s equations:

curl h⃗ = J⃗ , (7)

curl E⃗ = −µeh⃗ , (8)

E⃗ = −µe

(
⃗̇u × H⃗

)
, (9)

div h⃗ = 0, div E⃗ = 0, (10)

where ρ is the mass density, u i is the displacement vector components, ei j is the strain
tensor, σi j is the stress tensor, T is the temperature change of a material particle, T0
is the reference uniform temperature of the body, βi j is the thermal elastic coupling
tensor, ce is the specific heat at constant strain, Ki j is the thermal conductivity, t0 is
the relaxation time, J is the electric current density, µe is the magnetic permeabil-
ity, H⃗ is the magnetic field vector, λ, µT are elastic parameters; α,β, (µL − µT )
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